
Bibliographic Statements

Thomas Severiens
Born in 1970 he studied Physics at the Carl-von-Ossietzky University Oldenburg. In 1995 he started
to develop PhysNet. After graduating, together with some colleagues he founded the Institute for
Science Networking Oldenburg (ISN). Since 2004 he is working as a lecturer for Information
Engineering and as a researcher at the University of Osnabrück. He is one of the chairs of Dublin-
Core Working Group “Tools” and was a member of W3C Working Group “XQuery” from 2001 until
2005. His research interests include the development of distributed library systems, user oriented
scientific information portals, strategies for longterm preservation of the scientific research output,
and development tools for full-text semantics.

Christian Thiemann
Born in 1983 in Osnabrück, Germany. While still in high school, he worked for Oldenburg Research
and Development Institute for Information Technology Tools and Systems (OFFIS). After his
mandatory military service, he worked for the Institute for Science Networking Oldenburg (ISN) in
PhysNet project (2003-2005). Since fall 2003 he studies Physics at the Georg-August-University
Göttingen. In 2005/2006 he is studying at the University of California in San Diego. Since spring
2005 he also is a member of the working group on Physics of Transportation and Traffic at the
University of Duisburg-Essen. His research interests include cellular automaton models of freeway
traffic, computational physics, and computer science in general.



RDF Database for PhysNet and similar Portals
Thomas Severiens, University of Osnabrück, Department for Mathematics and Computer Science,
severiens@mathematik.uni-osnabrueck.de

Christian Thiemann, University of California, San Diego, mail@christian-thiemann.de

Introduction
Scientists use the internet to increase the visibility and impact of scholary and scientific outputs, such
as publications, research projects, and teaching material. Discipline specific portals like PhysNet1  can
aid scientists in these goals, by covering a specific research field, Physics in this case, and serving the
needs of their target group. The underlying motivation of such a portal service is to bring scientists
together, presenting the combination of their research interests, and can result in innovative findings.
PhysNet is a leading project in Physics information that demonstrates the use of semantic web
technologies and distributed user driven services by providing access to information on self archiving
publications and about institutional contact data.

We are running and continuously enhancing the PhysNet portal under the auspices of the European
Physical Society EPS since 1995. PhysNet is a bouquet of services such as lists of Physics-related
institution links (PhysDep), topic specific collections of journals and working groups (PhysTopic) etc.
The bouquet contains several search engines on grey literature, open access publications and self
archived publicationsi.

PhysNet was from its beginning developed as a distributed serviceii, which means that on the one hand
the editorial team maintaining the content is distributed all over the world and on the other hand the
service itself is mirrored on several hosts to offer an unbiased and highly available service. This
results in a thorough coverage, good topicality, and further offered information. PhysNet is a
maintained and open environment for new developers and team members to set up additional
mirroring servers, and for further patronizing societies. The basic principles can be found in the
charter2.

This article focuses on the data model being used to store the knowledge of the portal and on the used
techniques to allow a distributed maintenance of this kind of content.

Separation of Data and View
To offer additional, more interactive and sophisticated services and interfaces to PhysNet, it was
requested to separate the knowledge from its representation. Having already information on over
1,000 institutions in the system, this was no triviality. 

Until late summer 2004 PhysNet was a huge collection of HTML files containing the actual data, i.e.
institution names, their locations and homepage and publication list URLs, embedded within the view,
i.e. the HTML markup. The coarser geographical structure (continents, countries) was given by the
links between the HTML files, the finer geographical structure (states, cities) was stored in HTML
description lists as well as the institutional structure. While a human user could easily identify cities
in e.g. PhysDep service due to the bold printing and recognize the structure of a physics department’s
institutes due to the different indention, a machine had to infer this information in the same way by
interpreting the visualization of the data instead of having precise metadata. Furthermore, small typing
errors made while maintaining the lists destroyed even this weak metadata.

Therefore, and to be able to extend PhysNet with other services than just providing URLs, in October
2003 we started examining the structure of the PhysNet data in order to extract it into a database with
clear metadata. As one can easily recognize by browsing through PhysDep or PhysDoc, the PhysNet
data shows a very simple structure. Starting at the root node “PhysNet World” one has to select a
continent and a country until a list of cities is displayed. Each institution is either associated with

1 PhysNet: www.physnet.net 
2 PhysNet charter: www.physnet.de/PhysNet/charter.html 



another institution or with a city or country etc. This identifies the PhysNet data o be a tree structure,
thus XML seems to be the most appropriate data model to use. But a more detailed look shows that
certain nodes do have more than one parent. For example, Turkey is counted as a country of Europe
as well as a country of Asia, or the “University of California in San Diego” is associated with the city
of San Diego but also with the institution “University of California” which is associated with the state
California. Therefore, the PhysNet data is actually a graph for which RDFiii is the perfect data model.
RDF allows for easy storage by using serialized RDF triples in MySQL databases while RDF Schema
combined with OWL Lite provides an adequate language for defining the metadata. On the other
hand, while XML allows for editing the data by just using a simple text editor, the RDF graph is more
complex, which is the reason that one has to use a more sophisticated editor in order to be able to
manage the data amounts and structures as we have to handle with in PhysNet.

The decision for RDF triples as the data model was motivated by a number of reasons:

The data model should be able to encode all implicitly encoded information of the existing
HTML files of PhysNet and combine those parts of information, which was redundantly typed
into the files (e.g. sub-institutions of institutions located in more than one city). The fact, that the
information is a graph, not a tree of hierarchical information, gave a first hint on RDF.

The data model should be open for any kind of future developments. Semantic encoding in a
triples collection and definition of an ontology is perfectly fitting this requirement as it only may
request new predicates for the triples to be defined in the ontology.

It should be possible to mirror and run the database at selected mirror sites. This asked for
development of a database structure, which is not essentially requesting a specific implementation
of a database software. Our implementation uses only one table with three columns for the data
and one other table of the same structure for the metadata.

We were aware of the disadvantages this solutions has:

Due to the fact that the triples are unsorted, operations on the database are slow by default, even
if for most of the requested operations quick solutions could be found. To offer an acceptable
performance to those users operating on the database directly it is essential to hold it in the main
memory of the server. Due to the effect, that nearly all interaction with public users are running
on static HTML files (views) generated every night, the resulting load of the server is low.

Offering more interactive views like WebServices or XQuery based networking, it could be
requested to transfer the knowledge into a native RDF or RDF-XML database to increase the
speed of the interface. In 2004, when a decision on the architecture had to be made, RDF
databases were still in early development stage and too unstable, from our point of view, to trust
them. We wanted to make sure that we will always be able to change or expand the data model
and technology.

The PhysNet Ontology
In the following we will describe the metadata we created for storing the data presented in PhysNet.
The ontology defining the predicates in the triples follows the conventions of RDF Schemaiv and
OWL Litev, but the related RDF-editor recognizes a few semantic extensions which will be introduced
in this section and specified later on. This part will be pretty formal and detailed but only by that the
reader may be able to set up related services of his own.

Figure 1 shows a diagram representing the class hierarchy in the ontology. Each arrow pointing from
class A to class B states that class A is a subclass of class B, thus inherits all properties of class B.
However, to improve readability, some simplifications had been made: We omitted the namespace
prefixes, as we will do throughout most of this article, and the class physnet:Object, which is
just a simple (abstract) base class without any properties that is used to make the hierarchy graph a
tree. All classes that seem to have no superclasses (base classes) are actually a subclass of
physnet:Object. Classes which names are printed in italic are defined with the namespace prefix
physnet_abs while all other classes are defined with physnet except for PACSCode which is



defined with the namespace prefix pacs (for Physics and Astronomy Classification System3).
Similarly, all properties tagged by [abs] are defined with physnet_abs while all others are
defined with physnet except for parent in pacs:PACSCode which belongs to the namespace
pacs.

3 Physics and Astronomy Classification System: publish.aps.org/PACS/



Figure 1: Class hierarchy in the PhysNet ontology.

All classes and properties defined with physnet_abs are considered to be abstract. The concept of
abstract classes is an extension to RDF Schema and OWL Lite. The RDFEditor will not offer an
option to create an instance of such a class nor offer to assign a value to such a property. While the
concept of class inheritance and abstract classes is familiar from other object-orientated



environments, the concept of property inheritance and abstract properties might be new to the reader.
In the diagram, we list the properties of each class under the class name. In each line, the name of the
property, its range (type) and cardinality is given. Since we use OWL Lite, the only cardinality
restrictions available are “unlimited” (0..*), "max. 1” (0..1), “at least 1” (1..*), and “exactly 1”
(1..1). If a property is a subproperty, the name of its superproperty is given in parentheses before
the colon.

As already mentioned, the PhysNet data contains a lot of hierarchical structure. To represent this in
the editor and to simplify navigating through the data, we introduced the abstract class
physnet_abs:HierarchicalObject with the two abstract properties
physnet_abs:parent and physnet_abs:child. Both properties have the range
HierarchicalObject and any assignment of a value “Instance B” to parent (child) on
“Instance A” states that “Instance B” is considered to be a parent (child) of “Instance A” in the logical
hierarchy. The RDFEditor uses these special semantics to provide a display of the hierarchical
neighborhood around one particular instance instead of listing all instances of a certain type or other
matching criteria and thus drastically simplifies navigation inside the PhysNet data graph.

Another semantic extension of the RDFEditor is the physnet_abs:NameableObject which
provides the properties physnet:name, local_name and acronym. This class is meant to be a
base class representing any type of object that can have a name. The RDFEditor recognizes such
instances and displays them using their name rather than their RDF-URI. Note that in contrast to
HierarchicalObject the properties of NameableObject are non-abstract. While name,
local_name and acronym will always have simple strings as values, the different types of objects
in the hierarchy might be restricted to different parent or child objects which requires them to define a
new property derived from parent or child but further restrict the range of that property.

The simplest example of using the HierarchicalObject and the NameableObject is
representing the PACS tree by using one instance of PACSCode for each code. PACSCode defines a
new property pacs:parent derived from physnet_abs:parent that has PACSCode as range.
The PACS code and text is stored in the name property. This design results in a subgraph of
PACSCode instances in the PhysNet data graph. Practically, since we represent the official PACS
tree, this subgraph is of course a tree.

Another class derived from those two abstract classes is GeographicalObject which serves as a
base class for any object representing geographical structure, in particular World, Continent,
Country, State, and City. Each one of them defines a subproperty of parent that states the
containment of one geographical instance in another. Country and State are not direct subclasses
of GeographicalObject but are derived from CountryOrState because we needed cities to
be located in countries as well as in states, but there is no way in RDF Schema to specify that values
on a specific property might be of either type A or type B. City is also a subclass of the abstract
GPSObject which adds the gps property to all instances of City to which one can assign a GPS
instance containing the longitude and latitude of the city. While GPS data was first gathered for cities
only, currently the exact positions of single institutions are collected. Using this information PhysNet
will be able to calculate the distances between cities and offer searches like “Show all institutions 50
km around city A or institute B independent of borders of countries or continents”. Currently we are
evaluating whether this kind of service should be implemented on the database level, many databases
already implement these algorithms, or on the service level, which would allow us to stay independent
of the selected database software.

As shown in the lower left corner of the diagram, we defined three pure data objects representing
contact information, postal addresses and metadata about websites. Address is a simple structure
that can be used to represent a complete postal address. The first address lines containing recipient
and street name are stored using an RDF Sequence container. The zipcode is stored in a simple string
and the city property refers to an instance of City in the PhysNet data. Therefore the country can
be inferred by following the isCityIn property of the value on city. The Contact class
provides properties to store postal addresses and other contacts like email and phone. The source
property is not an actual data field shown on PhysNet but is used to specify the URL of the website(s)
from which the contact information was taken. A data validation script, that continuously checks for
broken links in the PhysNet data, uses this value to verify that the contact information is still up to



date. The WebObject is used to represent the content, PhysNet was launched for: web links. Each
instance must have a value on url giving the actual URL and may optionally provide further
information on title, language and webmaster.

All objects that might have a contact or a homepage have to be an instance of the abstract class
ContactableObject or WebPresentableObject which provide the two properties
contact and homepage. Another class referring to WebObject is the abstract class
AcademicObject defining the two properties publications and research which are meant
to store the links provided in PhysDoc, while the information given on the property homepage is
used in the PhysDep lists. Every AcademicObject is also a PACSClassificableObject.
This abstract class was introduced to add the property classification to Institution in
order to be able to associate PACS codes with institutions. It evolved to a base class for any object
that can be associated with any astronomy or physics related field and now provides also the oaiurl
property, where URLs of OAi data-providers4 are stored.

Introducing the abstract class InstitutionalObject leads us to the description of the
institutional structure in the PhysNet data graph. Each institution like universities, departments,
research groups or independent research institutes is represented by an instance of Institution
and due to the institutions property inherited from InstitutionalObject each such
institution can have “child institutes”. Using this property, departments can be associated with
universities and research groups with departments. Different universities have different types of
institutional structure, thus we did not add any more specific meaning to the Institution object
and left the recognition of the type of the actual instances to the PhysNet user. Therefore there is no
technical difference between e.g. the “University of Göttingen”, the “Physics Department” and the
“Institute for Theoretical Physics” although the structure stored in the PhysNet data graph and shown
together with the institution’s name in PhysDep or PhysDoc implies significant differences between
the three institutions. However, Institution provides the mandatory relevant property whose
value is used to evaluate whether an institution is doing mainly Physics related research or not. Thus,
in the above example, “University of Göttingen” would have a false value on relevant while the
other two would have a true value. This implementation allows field specific robots to extract the
relevant starting URLs for building up field specific learned search engines.

The institutions represented by Institution are actually interpreted to be some sort of child
institutions located in a bigger institution. For universities or independent research institutes we use
instances of LocalizedInstitution that adds the locatedIn property to specify a
GeographicalObject in which this institution is located. This property, as a subproperty of
HierarchicalObject’s parent, connects the institutional structure graph with the
geographical structure graph.

Another element of the institutional structure is the Person class used to represent specific persons
that may have a homepage or publication list. Persons can be inserted into the PhysNet hierarchy by
adding them as values to the faculty property of some Institution instance. Furthermore,
Person instances can be used to store contact information about a webmaster of a website using the
webmaster property of WebObject. The validation script that checks for broken links uses the
email value of the Contact instance on the Contact property of the Person instance on the
webmaster property of the instance of the WebObject storing the broken link, to send a
predefined email asking for the new URL of the website.

The Society class is the last element of the institutional structure and is used to represent physical
societies. The property isSocietyIn connects to the geographical structure and is used to specify
the country or continent the society is associated with. Technically there is no difference between an
instance of Society and LocalizedInstitution in the PhysNet data, but instances of
Society are also displayed in the Societies listing of the PhysNet service while instances of
LocalizedInstitution are shown in PhysDep and PhysDoc only. Even semantically there is
sometimes little difference between societies and what we understand as localized institutions, as
there are some societies like the “Max Planck Society” that supervise several research institutes but
there are also institutes like the Italian “Istituto Nazionale di Fisica Nucleare (INFN)” which are split

4 Open Archives Initiative: www.openarchives.org 



up into several small research institutes spread out over a whole country and may be seen as a society
as well.

Finally, to represent journals as shown in the PhysNet’s Journals list, we defined a class Journal,
that adds the boolean properties epsrecognized and freefulltext to the inherited properties
from NameableObject, WebPresentableObject and PACSClassificableObject.
These two properties are used to generat the lists of only EPS recognized journals and journals with
free fulltext available. Since many journals are published by physical societies or institutes, we also
derived Journal from HierarchicalObject and introduced the publisher property, which
connects to the institutional structure.

RDF Online-Editor
As mentioned above, we need an adequate editor to manage the data stored in the RDF graph. During
the design phase of the editor we were thinking whether it would be better to build an editor which
exactly fits the structure of the PhysNet data or offers the full flexibility of RDF. We decided to go for
more flexibility and created RDFEditor being able to edit any RDF graph described by normative
RDF Schema and OWL Lite while still offering convenient data entry forms due to support plugins.
The plugins offer a convenient method to initiate a whole set of operations on the RDF graph.

As described in the preceding section, the webmaster’s email address for some webpage is stored in a
Contact instance associated with a Person which is associated with the respective WebObject.
Adding a new link with webmaster email address in pure RDF is a tedious task of creating three RDF
objects and linking them together correctly. That is the way the RDFEditor offers the full flexibility of
RDF to the user, but in this case it was more than convenient to create a plugin that displays a simple
form with input fields for URL and email address and takes care of the creation and linking of the
RDF objects.

The same plugin, called PhysNetToolbox, offers a form for entering contact information including
postal address, thus combining the creation of a Contact and Address instance in one step.
However, the price for simplicity is the loss of flexibility as with using only the PhysNetToolbox
there is no possibility to create more than one postal address per contact or to insert more than three
name and street lines to a postal address. But then, one can use the basic RDF editing capabilities of
RDFEditor to enter the data as needed. This combination of being able to handle RDF on its basic
level and the support for user-defined plugins makes RDFEditor a very powerful tool.

Furthermore we had to decide on the platform on which to implement the editor. Since some countries
in PhysDep and PhysDoc are not maintained by us but by volunteers from all over the world, we
needed a system that allows editing the PhysNet data from various places. We decided to make the
RDFEditor completely web-based so that the only thing one needs to use it is a web browser.

RDFEditor can handle multiple users and for each of them certain editing restrictions can be enforced.
It is possible to create an account for somebody who is responsible for the data of the e.g. German
PhysDep list and who can only edit RDF objects that are children (in the sense of the child and
parent properties of HierarchicalObject) of the Country instance “Germany”.

The Data Model
The data model that is processed by RDFEditor can in theory be any RDF graph. It requires the graph
to be serialized into RDF triples and stored in a MySQL database. However, the internal design of the
RDFEditor allows for other input/output modules such as XML import or export.

The data model has to be described using OWL Lite which must be provided as an RDF graph also
stored in a MySQL database. This description is interpreted to be normative, thus RDFEditor does not
allow for the creation of classes that are not defined in the metadata. Almost every feature of RDF
Schema and the cardinality restrictions of OWL Lite are supported, the only exception is that
RDFEditor does not allow for resources that are instances of more than one class. This, however,
enforces object-orientated design of the metadata. Furthermore, RDFEditor implements some
additional semantic features that are described in the following.



# Definition of a World
'physnet:world','rdf:type','physnet:World'
'physnet:world','physnet:name','PhysNet World'
# Definition of Europe
'physnet:1080985493971846894281','rdf:type','physnet:Continent'
'physnet:1080985493971846894281','physnet:name','Europe'
'physnet:1080985493971846894281','physnet:isContinentIn','physnet:world'
# Definition of Asia
'physnet:1080985492911746798533','rdf:type','physnet:Continent'
'physnet:1080985492911746798533','physnet:name','Asia'
'physnet:1080985492911746798533','physnet:isContinentIn','physnet:world'
# Definition of Turkey
'physnet:109108474884939277521','physnet:name','Turkey'
'physnet:109108474884939277521','physnet:local_name','_:109108474884238966480'
'physnet:109108474884939277521','rdf:type','physnet:Country'
'_:109108474884238966480','rdf:type','rdf:Seq'
'_:109108474884238966480','_:1','Türkiye'
# Location of Turkey
'physnet:109108474884939277521','physnet:isCountryIn','physnet:1080985492911746798533'
'physnet:109108474884939277521','physnet:isCountryIn','physnet:1080985493971846894281'

Figure 2: RDF triples and graph to describe that Turkey is located in Europe and Asia, which are continents of
the world, and that Turkey has a local name "Türkiye".

Abstract Classes and Properties: In general, any of the classes defined in the metadata can be
created by using the RDFEditor and values can be assigned to any properties defined in the metadata.
Since this is sometimes not intended, the RDFEditor offers to specify an abstract namespace prefix.
All classes that are defined using that namespace prefix will not be shown in the RDFEditor’s class
list as well as properties defined using that namespace prefix will be hidden in the RDFEditor’s
resource edit panes.



Instance Names: RDFEditor allows for specifying the name of a class and one of its properties. All
instances of this class are then considered to have a name given as the (only) value of the specified
property. This name is used to represent the instance in listings or titles etc. If no such class is
specified, all RDF instances are listed using their URI which often is a cryptic value.

Hierarchy: Data stored in RDF graphs often show some sort of hierarchy, which can be exploited to
simplify navigation in the graph. In the configuration of RDFEditor the name of a class and two of its
properties can be given. All instances of this class are then interpreted as nodes in the hierarchy, while
values on the two properties are interpreted as pointers to parents or children of a particular instance.
With this information given, RDFEditor is able to replace the generic resource list, which simply lists
all instances in the data model, with a hierarchical resource list which lists parents and children of one
particular instance and allows for traversing through the graph along the hierarchy edges
(parent/child properties). 

Special Datatype Interpretation: The RDFEditor offers one simple HTML text input for every
value assigned to a property. However, sometimes it is more convenient or necessary to provide
different input fields. If the range of some property is xsd:boolean, values on that property are
shown as a two-radio-button group rather than a text input field where one would have to write either
“true” or “false”. If the range of some property is rdf:password, a HTML password input field is
shown to hide the content from the screen and the contents of this field are stored MD5 encoded
instead of plain text.

The User Interface
The RDFEditor’s web based user interface is modular. Every browser window is considered to be a
frame containing several user interface components, which are presented in the following.
Throughout, the RDF term type is used instead of the object-orientated term class, and resource is
used instead of instance.



Figure 3: Screenshot of RDFEditor currently editing the resource “Institute for Science Networking”

Generic and Hierarchical Resource List: The generic resource list simply lists all resources which
exist in the currently edited data model and match certain filter criteria. A variant of the resource list
is the hierarchical resource list (fig. 4) which shows parents and children of a specific resource. The
relations “parent” and “child” must be defined in the metadata as explained above.



Figure 4: Hierarchical Resource List

For each resource its type and its URIref or name is displayed. The URIref (or name) is a link which
performs an action depending on the context of the resource list. The resource list in the main editor
frame (fig. 3) sets the currently edited resource in the resource edit pane to the resource which URIref
(or name) has been clicked.

The hierarchical resource list additionally shows an arrow (“-->”) before each resource. By clicking
this link you can follow the hierarchy, i.e. the resource which parents and children are shown is set to
the resource which arrow has been clicked. On the right side of the hierarchical resource list a
“Change resource” button is presented ([...]) which asks the user for an URIref and sets the
resource list's resource to the one specified by the user. Next to it the hierarchical resource list offers a
button to switch to a generic resource list (“[non-hier]” in the title row). The resource list which
is shown after pressing this button offers a button to switch back to the hierarchical resource list.

The list of resources shown by a resource list can be restricted using a filter. By clicking the
magnifying glass in the title bar one can open the resource list’s filter setting dialog (fig. 5). The
RDFEditor distinguishes two different kinds of filters: type filters and property value filters.

Figure 5: Filter setting dialog

The type filter is set in the upper half of the filter settings dialog. The resource list will display only
those resources the type of which is among the selected ones.

The property value filters are configured in the lower half of the filter settings dialog. By clicking the
“New property value filter” button a new filter can be created. Existing property filters can be deleted
by clicking the “Delete property value filter” button which is shown left to each filter. For each filter
three input elements are displayed: The left drop-down box shows a list of properties defined in the
metadata. The right drop-down box offers “regexp” and “equal”.

If “regexp” is selected in the right drop-down box, the value given in the text field is interpreted as a
regular expression and the filter rejects all resources which do not have at least one value on the
selected property that matches the regular expression. If “equal” is selected the filter rejects all



resources which do not have at least one value on the selected property which exactly matches the
string entered in the text field. The comparisons are case-sensitive.

The filter configured in figure 5 matches all resources of type “Country” which have a value on the
property “name” that contains either the string “United” or “land”.

Resource edit pane: The resource edit pane (fig. 6) is the facility for editing a resource. The type and
the identity of the resource are shown in the title bar (the name of the resource is displayed instead of
its URIref if the editor is configured for nameable objects). By clicking the red cross in the title bar
the whole resource can be deleted from the RDF data. This results in the erasure of all triples which
subject or object matches exactly the URIref of the shown resource.

Figure 6: Resource edit pane

The type of a resource can be changed by clicking its type in the title bar. However, this feature is to
be used with caution because it may result in non-metadata-conform data since it only changes the
type of the resource regardless to whether the properties values are stored for in the data are still
defined with the new type.

Left to the resource edit pane’s title is a “Change resource” button ([...]) which, similarly to the
hierarchical resource list’s equivalent, asks the user for an URIref and changes the edited resource to
the one specified by the user.

The pane lists all properties which can be applied to the resource and the values on that properties. If
a value is a literal value, a text field is displayed. If a value is the URIref of another resource, i.e. a
reference, the pane may show a sub-resource-edit-pane showing the referenced resource.

Next to the property name the cardinality is displayed. Possible values are “unlimited”, “max. 1”, “at
least 1” and “exactly 1”.

If the resource is not editable by the currently logged in user, the resource edit pane shows only the
plain data without any edit options. That means, most of the buttons are not shown.



Container edit pane: The container edit pane (fig. 7) is a specialized resource edit pane which is
designed for editing rdfs:Containers. In general, it behaves like a normal property except that
the values are numbered. The buttons to the left of the input fields insert or delete values into/from the
list (the “Insert” button creates a new value on the current index, all values next to and below the
button are shifted one index number). The buttons to the right change the order of the values.

Figure 7: Container edit pane

User Management
As mentioned above, RDFEditor supports multiple users. Access to data models and even single
resources or subgraphs of a data model can be denied or granted for each user.

Figure 8 shows an example user which has access to the data model “myDatamodel” but is not
allowed to edit resources below the resource “mydata:world”. In the example data model the resource
“mydata:germany” is a child of “mydata:europe” which is a child of “mydata:world”. Eddie is
allowed to edit “mydata:germany”because it is explicitly mentioned in “allowedResources”. Also the
whole subtree below “mydata:germany” (which contains for example “mydata:berlin”) can be edited
by Eddie while “mydata:europe” and other subtrees below “physnet:world” (for example
“mydata:asia”) will appear read-only to Eddie.

Figure 8: User with restricted write access



Outview and Next Steps
In 2005 and 2006 we successfully transferred the knowledge of PhysNet from static HTML files into
the database of RDF triples. Meanwhile, the knowledge within the database is continuously being
updated and enriched. A semi-automatic tool was developed, which checks for broken links and
outdated information like phone numbers and other fragile information e.g. in the
ContactableObjects.

For summer 2006 we are planning a tutorial workshop with the goal to increase the number of editors
and further optimize the RDFEditor tool. This is desirable because topic related services require a
granularity of the institution on at least working group level.

One problem occurs to be serious but independent of the data model: PACS classification is
frequently updated as a result of upcoming new fields and research topics in Physics. A unique
migration path is not always given, resulting in a high amount of intellectual work being left after
automatic migration to the latest version of PACS. Currently PhysNet is still using PACS 2003
instead of the latest 2006 version of the classification.

Networking with other portals is currently one of the most relevant topics. As an example, let us have
a view into ViFaPhys5, the Physics Virtual Library. Their collection of web resources, of PACS
classified online and offline journals would perfectly fit into a topic specific portal service like
PhysTopics. On the other hand, their service lacks a well-maintained list of institutions, like PhysNet
offers. 

Networking with similar portals from other research fields may result into new and innovative
services. Sharing common parts of information, like the geographical information (independently of
the field the continents are equal, even the majority of institutions, their postal address, their GPS
coordinates etc. are identical), will increase interdisciplinary communication and make use of the
available synergies in maintaining online information services for the learned fields. WebServices
using XML SOAP and XQuery are promising candidates for the requested networking infrastructure.

Acknowledgements
A major part of this work has been done at the Institute for Science Networking ISN6 with support of
the European Physical Society EPS7.

Bibliography

5 ViFaPhys the Physics Virtual Library: www.vifaphys.de 
6 Institute for Science Networking ISN: www.isn-oldenburg.de 
7 European Physical Society EPS: www.eps.org 



i T. Severiens, M. Hohlfeld, K. Zimmermann, E. R. Hilf: PhysDoc - A Distributed Network of Physics Institutions
Documents - Collecting, Indexing, and Searching High Quality Documents by using Harvest D-Lib Magazine, Vol. 6
No. 12, December 2000
ii E. R. Hilf, M. Hohlfeld, T. Severiens, K. Zimmermann: Distributed Information Services in Physics in High Energy
Physics Libraries Webzine [ISSN 1424-2729] Issue 4 / June 2001
iii F. Manola, E. Miller, B. McBride: RDF Primer, W3C Working Draft, October 10, 2003, http://www.w3.org/TR/rdf-
primer/
iv D. Brickley, R.V. Guha: Resource Description Framework (RDF) Schema Specification, World Wide Web
Consortium, March 27, 2000. http://www.w3.org/TR/2000/CR-rdfschema-20000327/
v M. Dean, G. Schreiber, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, L.A. Stein:
OWL Web Ontology Language Reference, World Wide Web Consortium, March 31, 2003 (work in progress),
http://www.w3.org/TR/owl-ref/


